
Cissoid ∗

History

Diocles ( 250 – ∼100 BC) invented this curve to solve the dou-
bling of the cube problem (also know as the the Delian prob-
lem). The name cissoid (ivy-shaped) derives from the shape of
the curve. Later the method used to generate this curve was
generalized, and we call all curves generated in a similar way
cissoids. Newton (see below) found a way to generate the cis-
soid mechanically. The same kinematic motion with a different
choice of drawing pin generates the (right) strophoid.

From Thomas L. Heath’s Euclid’s Elements translation (1925)
(comments on definition 2, book one):

This curve is assumed to be the same as that by means
of which, according to Eutocius, Diocles in his book On
burning-glasses solved the problem of doubling the cube.

From Robert C. Yates’ Curves and their properties (1952):

As early as 1689, J. C. Sturm, in his Mathesis Enucleata,
gave a mechanical device for the constructions of the
cissoid of Diocles.

From E.H.Lockwood A book of Curves (1961):

The name cissoid (“Ivy-shaped”) is mentioned by Gemi-
nus in the first century B.C., that is, about a century
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after the death of the inventor Diocles. In the commen-
taries on the work by Archimedes On the Sphere and the
Cylinder, the curve is referred to as Diocles’ contribution
to the classic problem of doubling the cube. ... Fermat
and Roberval constructed the tangent (1634); Huygens
and Wallis found the area (1658); while Newton gives it
as an example, in his Arithmetica Universalis, of the an-
cients’ attempts at solving cubic problems and again as
a specimen in his Enumeratio Linearum Tertii Ordinis.

1 Description

The Cissoid of Diocles is a special case of the general cissoid.
It is a cissoid of a circle and a line tangent to the circle with
respect to a point on the circle opposite to the tangent point.
Here is a step-by-step description of the construction:

1. Let there be given a circle C and a line L tangent to this
circle.

2. Let O be the point on the circle opposite to the tangent
point.

2



3. Let P1 be a point on the circle C.

4. Let P2 be the intersection of line [O,P1] and L.

5. Let Q be a point on line[O,P1] such that
dist[O, Q] = dist[P1, P2].

6. The locus of Q (as P1 moves on C) is the cissoid of Diocles.

An important property to note is that Q and P1 are symmet-
ric with respect to the midpoint of segment [O,P2]. Call this
midpoint M. We can reflect every element in the construction
around M, which will help us visually see other properties.

2 Formula derivation

Let the given circle C be centered at (1/2, 0) with radius 1/2.
Let the given line L be x = 1, and let the given point O be
the origin. Let P1 be a variable point on the circle, and Q
the tracing point on line [O, P1]. Let the point (1, 0) be A.
We want to describe distance r = dist[O, Q] in terms of the
angle θ = [A, O, P1]. This will give us an equation for the
Cissoid in polar coordinates (r, θ). From elementary geometry,
the triangle [A, O, P1] is a right triangle, so by trignometry,
the length of [O,P1] is cos(θ). Similarly, triangle [O, A, P2]
is a right triangle and the length of [O, P2] is 1

cos(θ). Since

dist[O, Q] = dist[O, P2] − dist[O, P1], we have dist[O, Q] =
1

cos(θ)− cos(θ). Thus the polar equation is r = 1
cos(θ)− cos(θ). If

we combine the fractions and use the identity sin2 + cos2 = 1,
we arive at an equivalent form: r = sin(θ) tan(θ)].
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3 Formulas for Cissoid

In the following, the cusp is at the origin, and the asymptote is
x = 1. (So the diameter of the circle is 1.)

Parametric: (sin2(t), sin2(t) tan(t)) − π/2 < t < π/2.

Parametric:
(

t2

(1+t2)
, t3

(1+t2)

)
−∞ < t < ∞

Strophoid:
(

t2−1
(1+t2)

, t(t2−1)
(1+t2)

)
−∞ < t < ∞

Polar: r = 1
cos(θ) − cos(θ) − π/2 < t < π/2.

Cissoid: y2(1− x) = x3, Strophoid: y2(1− x) = x2(1 + x).

The Cissoid has numerous interesting properties.

4 Properties

4.1 Doubling the Cube

Given a segment [C, B], with the help of Cissoid of Diocles we
can construct a segment [C, M ] such that dist[C, M]3 = 2 ∗
dist[C, B]3. This solves the famous doubling the cube problem.

Step-by-step description:

1. Given two points C and B.

2. Construct a circle c1, centered on C and passing through B.

3. Construct points O and A on the circle such that line [O, A]
is perpendicular to line [C, B]
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4. Construct a cissoid of Diocles using circle c1, tangent at A,
and pole at O.

5. Construct point D such that B is the midpoint of seg-
ment[C,D].

6. Construct line[A,D]. Let the intersection of cissoid and line[A,D]
be Q. (the intersection cannot be found with Greek Ruler and
Compass. We assume it is a given.)

7. Let the intersection of line [C, D] and line [O, Q] be M .

8. dist[C, M]3 = 2 ∗ dist[C, D]3

This can be proved trivially with analytic geometry.
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4.2 Diocles’ Construction

By some modern common accounts (Morris Kline, Thomas L.
Heath), here’s how Diocles constructed the curve in his book
On Burning-glasses: Let AB and CD be perpendicular diame-
ters of a circle. Let E be a point on arc[B,C], and Z be a point
on arc[B,D], such that BE, BZ are equal. Draw ZH perpen-
dicular to CD. Draw ED. Let P be intersection[ZH,ED]. The
cissoid is the locus of all points P determined by all positions of
E on arc[B,C] and Z on arc[B,D] with arc[B,E]=arc[B,Z]. (the
portion of the curve that lies outside of the circle is a latter
generalization).

In the curve, we have CH/HZ=HZ/HD=HD/HP. Thus HZ and
HD are two mean proportionals between CH and HP. Proof:
taking CH/HZ=HZ/HD, we have CH ∗ HD = HZ2. trian-
gle[D,C,Z] is a right triangle since it’s a triangle on a circle with
one side being the diameter (elementary geometry). We know
an angle[D,C,Z] and one side distance[D,C], thus by trignome-
try of right angles, we can derive all lengths DZ, CZ, and HZ.
Substituting the results of computation in CH ∗ HD = HZ2

results an identity. Similarly, we know length HP and find
HZ/HD=HD/HP to be an identity.
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4.3 Newton’s Carpenter’s Square and Tangent

Newton showed that Cissoid of Diocles and the right Strophoid
can be generated by sliding a right triangle. The midpoint J of
the edge CF draws the Cissoid, the vertex F the Strophopid.
This method also easily proves the tangent construction.

Step-by-step description:

1. Let there be two distinct fixed points B and O, both on a
given line j. (distance[B,O] will be the radius of the cissoid of
Diocle we are about to construct.)

2. Let there be a line k passing O and perpendicular to j.

3. Let there be a circle centered on an arbitrary point C on k,
with radius OB.

4. There are two tangents of this circle passing B, let the tangent
points be E and F.

5. Let I be the midpoint between E and the center of the circle.
Similarly, let J be the midpoint between F and the center of the
circle.
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6. The locus of I and J (as C moves on k) is the cissoid of Diocles
and a line. Also, the locus of E and F is the right strophoid.

Tangent construction for Cissoid and Strophoid: Think of tri-
angle[C,F,B] as a rigid moving body. The point C moves in
the direction of vector[O,C], and point B moves in the direction
of vector[B,F]. The intersection H (not shown) of normals of
line[O,C] and line[B,F] is its center of rotation. J is the point
tracing the Cissoid and is also a point on the triangle, thus HJ
is normal to the Cissoid. For the Strophoid change the last sen-
tence: Since the tracing point F is a point on the triangle, thus
HF is normal to the Strophoid.

In 3D-XploreMath, this construction is shown automatically
when Cissoid is chosen from the Plane Curve menu, just after
the curve is drawn (or when it is redrawn by choosing Create
from the Action menu or typing Command-K). In the Action
Menu switch between Cissoid and Strophoid. Hold down the
option key to slow the animation, hold down Control to reverse
direction, and press the spacebar to pause.

In the animation, the tangent and normal are shown as blue.
The critical point that generates the normal line is the inter-
section of the green lines. One is a vertical drop, the other
perpendicular to the red line.
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4.4 Pedal and Cardioid

The pedal of a cissoid of Diocles with respect to a point P is
the cardioid. If the cissoid’s asymptote is the line y = 1 and its
cusp is at the origin, then P is at {0,4}. It follows by definition,
the negative pedal of a cardioid with respect to a point opposite
its cusp is the cissoid of Diocles.
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4.5 Negative Pedal and Parabola

The pedal of a parabola with respect to its vertex is the cissoid
of Diocles. (and then by definition, the negative pedal of a
cissoid of Diocles with respect to its cusp is a parabola.)

4.6 Inversion and Parabola

The inversion of a cissoid of Diocles at cusp is a parabola.
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4.7 Roulette of a Parabola

Let there be a fixed parabola. Let there be an equal parabola
that rolls on the given parabola in such way that the two parabo-
las are symmetric to the line of tangency. The vertex of the
rolling parabola traces a cissoid of Diocles.

XL.
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