Ordinal Machines and Combinatorial Principles

BY PETER KOEPKE

University of Bonn

Wien, November 19, 2005

- Register machines working with ordinals
- computable = constructible
- the Continuum Hypothesis in L
- SILVER machines
- defining a Silver machine from a register machine

— ...

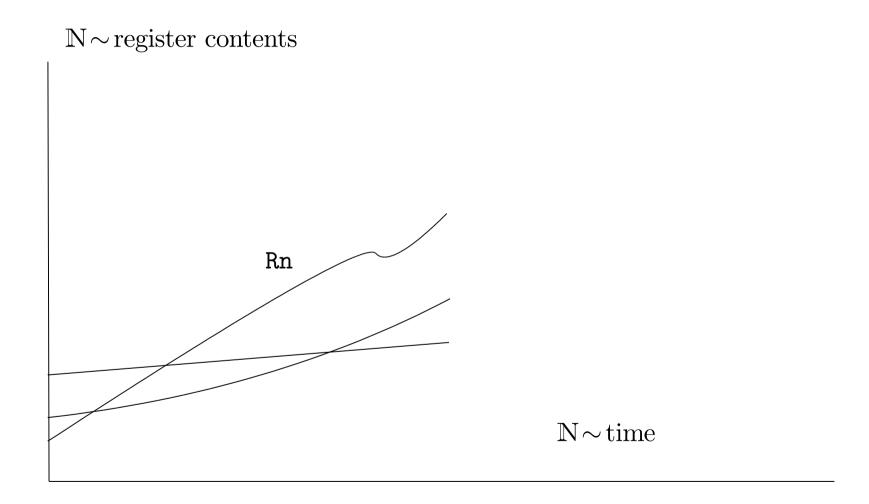
A register program for multiplication

```
Addition, computing R2 = R0 + R1:
  R3:=0
  R4 := 0
2 R2:=0
  if RO=R3 then go to 7
3
  R3:=R3+1
  R2 := R2 + 1
6 go to 3
  if R1=R4 then STOP
8 R4:=R4+1
  R2 := R2 + 1
10 go to 7
```

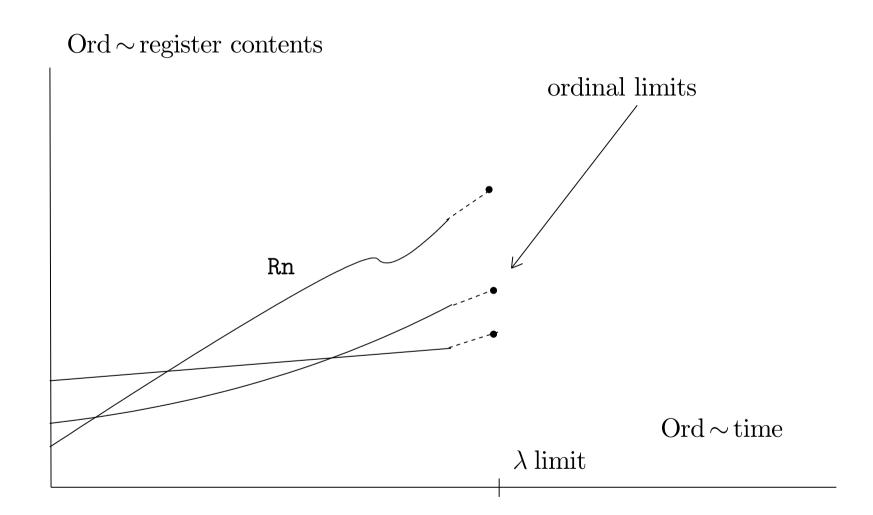
Or, with names for registers

```
Addition, computing gamma = alpha + beta:
  alpha':=0
  beta':=0
2 gamma:=0
  if alpha=alpha' then go to 7
3
  alpha':=alpha'+1
  gamma:=gamma+1
6 go to 3
  if beta=beta' then STOP
8 beta':=beta'+1
  gamma:=gamma+1
10 go to 7
```

A picture of a computation:



Computing with ordinals (RYAN SIDERS, Helsinki):



Then, the previous program performs the standard ordinal addition:

```
Ordinal addition, computing gamma = alpha + beta:
  alpha':=0
0
  beta':=0
2 gamma:=0
   if alpha=alpha' then go to 7
3
  alpha':=alpha'+1
  gamma:=gamma+1
5
6 go to 3
  if beta=beta' then STOP
8 beta':=beta'+1
  gamma:=gamma+1
10 go to 7
   Ordinal addition is (ordinal) computable.
```

Let P be a register program and let $\vec{\alpha} = (\alpha_0, \alpha_1, ..., 0, 0, ...)$ and $\vec{\beta} = (\beta_0, \beta_1, ..., 0, 0, ...)$ be ω -sequences of ordinals which eventually vanish. Then

$$P(\vec{\alpha}) = \vec{\beta}$$

expresses that the program P when started with the initial register contents $\vec{\alpha}$ stops and then the register contents are $\vec{\beta}$. If the program does not stop we write

$$P(\vec{\alpha}) = \uparrow$$

A function $F: \text{Ord} \to 2$ is *(ordinal) computable* by the program P and the parameters $\beta_1, ..., \beta_n$ if

$$\forall \beta_0 \ P(\beta_0, \beta_1, ..., \beta_n, 0, 0, ...) = (F(\beta_0), ...)$$

A set $x \subseteq \text{Ord}$ is *(ordinal) computable* if its characteristic function is *ordinal computable* (by some program and ordinal parameters).

The standard Gödel pairing for ordinals is computable:

```
Goedel pairing, computing gamma = G(alpha, beta):
  alpha':=0
  beta':=0
2 eta:=0
3 flag:=0
3 gamma:=0
  if alpha=alpha' and beta=beta' then STOP
  if alpha'=eta and and beta'=eta and flag=0 then
      alpha'=0, flag:=1, go to 4 fi
  if alpha'=eta and and beta'=eta and flag=1 then
      eta:=eta+1, alpha'=eta, beta'=0, gamma:=gamma+1, go to 4 fi
  if beta'<eta and flag=0 then
      beta':=beta'+1, gamma:=gamma+1, go to 4 fi
  if alpha'<eta and flag=1 then
      alpha':=alpha'+1, gamma:=gamma+1, go to 4 fi
```

GÖDEL's constructible hierarchy

$$-L_0=\emptyset$$

$$- L_{\alpha+1} = \{ \{ x \in L_{\alpha} \mid L_{\alpha} \vDash \varphi(x, \vec{y}) \} \mid \varphi \in \text{Fml}, \vec{y} \in L_{\alpha} \}$$

$$-L_{\lambda} = \bigcup_{\alpha < \lambda} L_{\alpha}$$

$$- L = \bigcup_{\alpha \in \text{Ord}} L_{\alpha}$$

Everything in L is named by finitely many ordinals:

$$\{x \in L_{\alpha} \mid L_{\alpha} \vDash \varphi(x, \vec{y})\} = \{x \in L_{\alpha} \mid L_{\alpha} \vDash \varphi(x, \{x \in L_{\beta} \mid L_{\beta} \vDash \psi(x, \vec{z})\})\}$$

$$= \{x \in L_{\alpha} \mid L_{\alpha} \vDash \varphi(x, \{x \in L_{\beta} \mid L_{\beta} \vDash \psi(x, \{...\})\})\}$$

$$\sim (\alpha, \varphi, \beta, \psi, ...)$$

This corresponds to *one* ordinal via Gödel pairing.

Computing bounded truth in L

$$L_{\alpha+1} \vDash x \in \{x \in L_{\alpha} \mid L_{\alpha} \vDash \varphi(x, \vec{y})\}$$

$$\leftrightarrow L_{\alpha} \vDash \varphi(x, \vec{y})$$

$$\leftrightarrow L_{\alpha} \vDash (\psi_{0} \lor \psi_{1})(x, \vec{y})$$

$$\leftrightarrow L_{\alpha} \vDash \psi_{0}(x, \vec{y}) \text{ or } L_{\alpha} \vDash \psi_{1}(x, \vec{y})$$

$$\leftrightarrow \dots$$

$$L_{\alpha} \vDash \exists v \psi(v, \vec{y})$$

$$\leftrightarrow \text{ there is } x \in L_{\alpha} \text{ such that } L_{\alpha} \vDash \psi(x, \vec{y})$$

$$\leftrightarrow \dots$$

One can arrange, that the RHS formulas are smaller in an adequate well-order.

If we define a constructible truth predicate $F: \text{Ord} \to 2$ by

$$F(\lceil L_{\alpha} \vDash \varphi(x, \vec{y}) \rceil) = 1 \text{ iff } L_{\alpha} \vDash \varphi(x, \vec{y})$$

then F has a recursive definition of the form:

$$F(\alpha) = \begin{cases} 1 \text{ iff } \exists \nu < \alpha \ H(\alpha, \nu, F(\nu)) = 1 \\ 0 \text{ else} \end{cases}$$

for some computable function H.

Computing F(3) with a stack of ordinals:

```
time stack contents numerical code 1 	 F(3)? 2^3 = 8 2^3 + 2^0 = 9 F(3)?, F(0)? 2^3 + 2^0 = 9 F(3)?, F(0)! (=0) F(3)?, F(1)? 2^3 + 2^1 = 10 F(3)?, F(1)?, F(0)? 2^3 + 2^1 + 2^0 = 11 F(3)?, F(1)?, F(0)! F(3)?, F(1)! F(3)?, F(1)!
```

Computing $F(\omega + 2)$ with a stack of ordinals: ne stack contents ordinal code

time	stack contents	ordinal code
1	$F(\omega+2)$?	$2^{\omega+2}$
2	$F(\omega + 2)$?, $F(0)$?	$2^{\omega+2}+2^0$
3	$F(\omega+2)$?, $F(0)$! (=0)	
4	$F(\omega + 2)$?, $F(1)$?	$2^{\omega+2}+2^1$
5	$F(\omega+2)$?, $F(1)$?, $F(0)$?	$2^{\omega+2} + 2^1 + 2^0$
6	$F(\omega+2)$?, $F(1)$?, $F(0)$!	
7	$F(\omega+2)?, F(1)!$	
:	:	:
	$F(\omega+2)$?, $F(n)$?	$2^{\omega+2}+2^n$
	:	
	$F(\omega+2)$?, $F(n)$!	
	:	
	$F(\omega+2)$?, $F(\omega)$?	$2^{\omega+2} + 2^{\omega} = \lim_{n < \omega} (2^{\omega+2} + 2^n)$
	:	

Hence the constructible truth predicate is ordinal computable.

Theorem 1. A set $x \subseteq \text{Ord}$ is ordinal computable iff $x \in L$.

Proof. (\rightarrow) . Let

$$\forall \beta_0 \ P(\beta_0, \beta_1, ..., \beta_n, 0, 0, ...) = (\chi_x(\beta_0), ...).$$

By the absoluteness of ordinal computations,

$$\forall \beta_0 (P(\beta_0, \beta_1, ..., \beta_n, 0, 0, ...))^L = (\chi_x(\beta_0), ...).$$

Hence x is definable in L.

 (\leftarrow) . Let $x = \{v \in L_{\alpha} \mid L_{\alpha} \vDash \varphi(v, \vec{\beta})\}$. Then χ_x is computable:

$$\chi_{x}(\xi) = 1 \quad \text{iff} \quad L_{\alpha} \vDash \varphi(\xi, \vec{\beta})$$
$$\text{iff} \quad F(\left[L_{\alpha} \vDash \varphi(\xi, \vec{\beta})\right]) = 1$$
$$\text{iff} \quad F(G(\xi, \alpha, \vec{\beta})) = 1$$

where G is the computable function $(\xi, \alpha, \vec{\beta}) \mapsto \left[L_{\alpha} \vDash \varphi(\xi, \vec{\beta}) \right]$.

The axiom of constructibility V=L from the viewpoint of ordinal computability:

$$\forall x \subseteq \text{Ord } \exists P \exists \beta_1, ..., \beta_n \, \forall \beta_0 \, (\beta_0 \in x \leftrightarrow P(\beta_0, \beta_1, ..., \beta_n, 0, 0, ...) = 1).$$

Theorem 2. $V = L \rightarrow CH$.

Proof. Let $x \subseteq \omega$. By V = L let

$$\forall \beta_0 \ (\beta_0 \in x \leftrightarrow P(\beta_0, \beta_1, ..., \beta_n, 0, 0, ...) = 1).$$

Let $X \prec V$ be countable, $x, \beta_1, ..., \beta_n \in X$. Let

$$\pi: (X, \in) \cong (M, \in),$$

M transitive, $\bar{\beta}_1 = \pi(\beta_1), ..., \bar{\beta}_n = \pi(\beta_n)$. Then, by absoluteness,

$$\forall \beta_0 \ (\beta_0 \in x \leftrightarrow (P(\beta_0, \bar{\beta}_1, ..., \bar{\beta}_n, 0, 0, ...) = 1)^M \leftrightarrow P(\beta_0, \bar{\beta}_1, ..., \bar{\beta}_n, 0, 0, ...) = 1).$$

Hence x is defined by the program P and the parameters $\bar{\beta}_1, ..., \bar{\beta}_n < \aleph_1$. There are \aleph_1 such definitions, hence $\operatorname{card}(\mathcal{P}(\omega)) = \aleph_1$.

SILVER machines

Consider a structure $M = (\text{Ord}, <, M), M: \text{Ord}^{<\omega} \rightharpoonup \text{Ord}$. For $\alpha \in \text{Ord}$ let

$$M^{\alpha} = (\alpha, <, M \cap \alpha^{<\omega});$$

for $X \subseteq \alpha$ let $M^{\alpha}[X]$ be the substructure of M^{α} generated by X. M is a SILVER machine if it satisfies the following axioms:

- (Condensation) For $\alpha \in \text{Ord}$ and $X \subseteq \alpha$ there is a unique β such that $M^{\beta} \cong M^{\alpha}[X]$;
- (Finiteness property) For $\alpha \in \text{Ord}$ there is a finite set $z \subseteq \alpha$ such that for all $X \subseteq \alpha + 1$

$$M^{\alpha+1}[X] \subseteq M^{\alpha}[(X \cap \alpha) \cup z] \cup \{\alpha\};$$

- (Collapsing property) If the limit ordinal β is singular in L then there is $\alpha < \beta$ and a finite set $p \subseteq \text{Ord}$ such that $M[\alpha \cup p] \cap \beta$ is cofinal in β .

Basic idea for turning an ordinal register machine into a SILVER machine:

$$M(\lceil P \rceil, l, \beta_0, ..., \beta_n) = \gamma$$
 iff $P(\vec{\beta}) = \vec{\gamma}$ and γ is the *l*-th component of $\vec{\gamma}$.

Define initial machines $M^{\vec{\alpha}}$ for ordinal sequences $\vec{\alpha}=(\alpha_0,\alpha_1,...)$ by $M^{\vec{\alpha}}(\lceil P \rceil,l,\beta_0,...,\beta_n)=\gamma$ iff $M(\lceil P \rceil,l,\beta_0,...,\beta_n)=\gamma$ and during the computation by P the register content of the register Rn was always $<\alpha_n$.

For condensation, consider a transitivisation

$$\pi: (\beta, <) \cong (M^{\vec{\alpha}}[X], <).$$

We have to show that π respects computations, i.e.

$$P(\vec{\xi}) = \vec{\zeta} \text{ iff } P(\pi(\vec{\xi})) = \pi(\vec{\zeta}).$$

Easy for the instructions Rn:=0 and Rn:=Rn+1. Modify the programming language to have the only other instruction

while Rm < Rn {Instructions}.

We have to see inductively that this loop is respected by π if all the instructions in {Instructions} are respected.

This is clear for single traversals of the loop. If the loop is traversed λ times for λ a limit ordinal we have to see that the limit rule for register contents is respected by π . Using while instructions there will be enough witnesses to the limit behaviour in $M^{\vec{\alpha}}[X]$.

We can carry out Silver's proof of \square with the resulting machine.

Can this proof be re-phrased (and better understood) in the language of ordinal register machines?

Let β be a singular limit ordinal.

Let α_0 be minimal, such that the singularity of β can be computed with all registers $< \alpha_0$.

Let $\alpha_1 \leq \alpha_0$ be minimal, such that the singularity of β can be computed with register $RO < \alpha_0$ and all other registers $< \alpha_1$.

Let $\alpha_2 \leq \alpha_1$ be minimal, such that the singularity of β can be computed with registers $R0 < \alpha_0$, $R1 < \alpha_1$ and all other registers $< \alpha_2$.

• • •

???