Ordinal Machines and Combinatorial
Principles

BY PETER KOEPKE

University of Bonn

Wien, November 19, 2005

Register machines working with ordinals
computable = constructible

the Continuum Hypothesis in L

SILVER machines

defining a SILVER machine from a register machine

A register program for multiplication

Addition, computing R2 = RO + Rl:
R3:=0

R4:=0

R2:=0

if RO=R3 then go to 7
R3:=R3+1

R2:=R2+1

go to 3

if R1=R4 then STOP

R4 :=R4+1

R2:=R2+1

10 go to 7

© 00 N O O » W N~ O

Or, with names for registers

Addition, computing gamma = alpha + beta:
alpha’:=0

beta’:=0

gamma : =0

if alpha=alpha’ then go to 7
alpha’:=alpha’+1
gamma : =gamma+1

go to 3

if beta=beta’ then STOP
beta’:=beta’+1
gamma : =gamma+1

10 go to 7

© 00 N O O » W N~ O

A picture of a computation:

IN ~ register contents

Rn

IN ~ time

Computing with ordinals (RYAN SIDERS, Helsinki):

Ord ~ register contents

ordinal limits

Rn

Ord ~ time
A limit

Then, the previous program performs the standard ordinal addition:

Ordinal addition, computing gamma = alpha + beta:

O alpha’:=0

1 beta’:=0

2 gamma:=0

3 1if alpha=alpha’ then go to 7
4 alpha’:=alpha’+1

5 gamma:=gamma+l

6 go to 3

7 1f beta=beta’ then STOP
8 beta’:=beta’+l

9 gamma:=gamma+l

10 go to 7

Ordinal addition is (ordinal) computable.

Let P be a register program and let @ = (ay, o, ..., 0, 0, ...) and E = (O,
B1,...,0,0,...) be w-sequences of ordinals which eventually vanish. Then

P(a)=p0
expresses that the program P when started with the initial register contents &

stops and then the register contents are (. If the program does not stop we
write

P(d)=1

A function F: Ord — 2 is (ordinal) computable by the program P and the
parameters (i, ..., 3, if

Y6y P(Go, B, .-, 50,0,0,...) = (F(5),...)

A set x C Ord is (ordinal) computable if its characteristic function is ordinal
computable (by some program and ordinal parameters).

The standard GODEL pairing for ordinals is computable:

Goedel pairing, computing gamma = G(alpha,beta):

O alpha’:=0

1 beta’:=0

2 eta:=0

3 flag:=0

3 gamma:=0

4 1if alpha=alpha’ and beta=beta’ then STOP

5 1f alpha’=eta and and beta’=eta and flag=0 then

alpha’=0, flag:=1, go to 4 fi
6 1f alpha’=eta and and beta’=eta and flag=1 then

eta:=etatl, alpha’=eta, beta’=0, gamma:=gamma+l, go to 4 fi
7 1f beta’<eta and flag=0 then

beta’:=beta’+1l, gamma:=gammat+l, go to 4 fi
8 1f alpha’<eta and flag=1 then

alpha’:=alpha’+1, gamma:=gamma+l, go to 4 fi

GODEL’s constructible hierarchy

— Ly=0

— Lea={{z€Lla|LaF o, i)} | p€Pml, j L,)

o L)‘:Ua<)\ LO‘

o L= UozEOrd LO‘

Everything in L is named by finitely many ordinals:

{reLl,|LaEo(z,7¥)}

Y

(€ La|LaF oz Ax €Ly |LyF(z,Z)})}
)

{zEEL@ |La|:(,0<£€,{£€€L5 |L5|:77D<:Ij,
(a7907/87¢7"')

This corresponds to one ordinal via GODEL pairing.

[

S

Computing bounded truth in L

LoyiFre{reLly|LoFo(z,7)}
— LoF oz, 7)

— LoF (V1) (x,y)

— LoEy(x,y) or LoE(x,7)

Lo E (v,)
« there is x € L, such that L,Fy(x, %)

One can arrange, that the RHS formulas are smaller in an adequate well-
order.

If we define a constructible truth predicate F': Ord — 2 by

F([LoaFo(z,y)])=1iff LaFp(z,¥)
then F' has a recursive definition of the form:

Fla) = liff v<a H(a,v, F(v))=1
| 0else

for some computable function H.

Computing F(3) with a stack of ordinals:

time stack contents

O O O i W N+

F(3)?

F(3)?, F(0)?
F(3)?, F(0)!(=0)
F(3)?, F(1)?
F(3)7, F(1)?, F
F(3)2, F(1)?, F(0)!
F(3)7, F(1)!

F(3)!

numerical code
23 =8
25 +20=9

23+ 21—-10

(0)? 224+2'+2Y=11

Computing F'(w+ 2) with a stack of ordinals:

time stack contents ordinal code
1 Flw+2)? Qw2
2 Flw+2)7,F(0)? gtz 4 9
3 Flw+2)7,F0)(=0)
4 Flw+2)7, F(1)? puwtz 4 ol
5 Flw+2)?,F(1)?, F(0)? 2¢72 420420
6 Flw+2)?, F(1)?, F(0)
7 Flw+2)?,F(1)
F(w+2)?, F(n)? Qutz 4 on

Fw+2)?, F(w)? 292 4 2 =lim,, -, (2¥ 2+ 2")

Hence the constructible truth predicate is ordinal computable.
Theorem 1. A set x C Ord is ordinal computable iff x € L.

Proof. (—). Let
\V/ﬁo P(ﬁ()? 617'“767170707'“):(XiC(ﬁO)?“')‘

By the absoluteness of ordinal computations,

vﬁO <P<607 617 cey ﬁna 07 07))L: <Xx<60>7)

Hence x is definable in L. .
(«). Let e={ve L, |L,Ep(v,B)}. Then x, is computable:

() =1 iff Lk (¢, §)
iff P(| Lok (¢, 7)) =1
iff F(G(¢ a,f))=1

where G is the computable function (£, « 3) |—>{ w(&, B)l

The axiom of constructibility V' = L from the viewpoint of ordinal com-
putability:

Vx COrd3P3By, ..., 8,960 (Bo € P(fo, Bry s B, 0,0,..) = 1),

Theorem 2. V=L — CH.

Proof. Let z Cw. By V=1 let
Y06y (By € x < P(By, B, ..., Bn,0,0,...)=1).
Let X <V be countable, z, 01, ..., 3, € X. Let
T (X,e)x(M,e),

M transitive, 3, =7(31), ..., 3,=m(5,). Then, by absoluteness,

\V/ﬁo (6OE:C<_>(P(6O7 617 K 57170707) :1)M<_>P(607 6_17 ceey B?”wOaO)): 1)

Hence z is defined by the program P and the parameters (i, ..., 3, <¥;. There
are Ny such definitions, hence card(P(w)) =¥N;.]

SILVER machines

Consider a structure M = (Ord, <, M), M: Ord~¥— Ord. For o € Ord let
M= (a, <, MNa~");
for X Ca let M X] be the substructure of M“ generated by X.
M is a SILVER machine if it satisfies the following axioms:
— (Condensation) For a € Ord and X C « there is a unique (such that
MP = M[X];

— (Finiteness property) For o € Ord there is a finite set z C « such that for
all X Ca+1

MoX]C MY (X Na)uzlu{a}:

— (Collapsing property) If the limit ordinal (is singular in L then there is
a < 3 and a finite set p C Ord such that M|aU p| N3 is cofinal in .

Basic idea for turning an ordinal register machine into a SILVER machine:

M([P1,L, By, ..., Bn) = iff P(ﬁ) =4~ and ~ is the [-th component of 7 .

Define initial machines M¢ for ordinal sequences & = (ay, o, ...) by

MY ([P, 1, Bo, ..., Bp) = v iff M([P],1, B, ..., 3,) = 7 and during the computa-

tion by P the register content of the register Rn was always <, .

For condensation, consider a transitivisation
(8, <) = (M[X], <).

We have to show that 7 respects computations, i.e.

P(€)=(iff P(r(&))=(().

Easy for the instructions Rn:=0 and Rn:=Rn+1. Modify the programming
language to have the only other instruction

while BRm < Rn {Instructions}.

We have to see inductively that this loop is respected by 7 if all the instruc-
tions in {Instructions} are respected.

This is clear for single traversals of the loop. If the loop is traversed A times
for A a limit ordinal we have to see that the limit rule for register contents is
respected by 7. Using while instructions there will be enough witnesses to the

limit behaviour in M%[X].

We can carry out SILVER'’s proof of [] with the resulting machine.

Can this proof be re-phrased (and better understood) in the language of
ordinal register machines?

Let (3 be a singular limit ordinal.

Let ap be minimal, such that the singularity of 3 can be computed with all
registers < qy.

Let a1 < oy be minimal, such that the singularity of 5 can be computed
with register RO < ay and all other registers < a;.

Let as < a7 be minimal, such that the singularity of 5 can be computed
with registers RO < oy, R1 < a; and all other registers < as.

777

